Higher-order Lie symmetries in identifiability and predictability analysis of dynamic models.

نویسندگان

  • Benjamin Merkt
  • Jens Timmer
  • Daniel Kaschek
چکیده

Parameter estimation in ordinary differential equations (ODEs) has manifold applications not only in physics but also in the life sciences. When estimating the ODE parameters from experimentally observed data, the modeler is frequently concerned with the question of parameter identifiability. The source of parameter nonidentifiability is tightly related to Lie group symmetries. In the present work, we establish a direct search algorithm for the determination of admitted Lie group symmetries. We clarify the relationship between admitted symmetries and parameter nonidentifiability. The proposed algorithm is applied to illustrative toy models as well as a data-based ODE model of the NFκB signaling pathway. We find that besides translations and scaling transformations also higher-order transformations play a role. Enabled by the knowledge about the explicit underlying symmetry transformations, we show how models with nonidentifiable parameters can still be employed to make reliable predictions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

Identifiability of Dynamic Stochastic General Equilibrium Models with Covariance Restrictions

This article is concerned with identification problem of parameters of Dynamic Stochastic General Equilibrium Models with emphasis on structural constraints, so that the number of observable variables is equal to the number of exogenous variables. We derived a set of identifiability conditions and suggested a procedure for a thorough analysis of identification at each point in the parameters sp...

متن کامل

Exact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries

‎In this paper Lie symmetry analysis is applied to find new‎ solution for Fokker Plank equation of geometric Brownian motion‎. This analysis classifies the solution format of the Fokker Plank‎ ‎equation‎.

متن کامل

Polynomial and non-polynomial solutions set for wave equation with using Lie point symmetries

‎This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE)‎. ‎We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry‎. ‎We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation‎. ‎A generalized procedure for polynomial solution is pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 92 1  شماره 

صفحات  -

تاریخ انتشار 2015